Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years for its ability to solve temporally-extended problems without relying on discounting. Meanwhile, in the discounted setting, algorithms with entropy regularization have been developed, leading to improvements over deterministic methods. Despite the distinct benefits of these approaches, deep RL algorithms for the entropy-regularized average-reward objective have not been developed. While policy-gradient based approaches have recently been presented for the average-reward literature, the corresponding actor-critic framework remains less explored. In this paper, we introduce an average-reward soft actor-critic algorithm to address these gaps in the field. We validate our method by comparing with existing average-reward algorithms on standard RL benchmarks, achieving superior performance for the average-reward criterion.more » « lessFree, publicly-accessible full text available May 9, 2026
-
In reinforcement learning, especially in sparse-reward domains, many environment steps are required to observe reward information. In order to increase the frequency of such observations, potential-based reward shaping (PBRS) has been proposed as a method of providing a more dense reward signal while leaving the optimal policy invariant. However, the required potential function must be carefully designed with task-dependent knowledge to not deter training performance. In this work, we propose a bootstrapped method of reward shaping, termed BS-RS, in which the agent's current estimate of the state-value function acts as the potential function for PBRS. We provide convergence proofs for the tabular setting, give insights into training dynamics for deep RL, and show that the proposed method improves training speed in the Atari suite.more » « lessFree, publicly-accessible full text available April 11, 2026
-
In reinforcement learning (RL), the ability to utilize prior knowledge from previously solved tasks can allow agents to quickly solve new problems. In some cases, these new problems may be approximately solved by composing the solutions of previously solved primitive tasks (task composition). Otherwise, prior knowledge can be used to adjust the reward function for a new problem, in a way that leaves the optimal policy unchanged but enables quicker learning (reward shaping). In this work, we develop a general framework for reward shaping and task composition in entropy-regularized RL. To do so, we derive an exact relation connecting the optimal soft value functions for two entropy-regularized RL problems with different reward functions and dynamics. We show how the derived relation leads to a general result for reward shaping in entropy-regularized RL. We then generalize this approach to derive an exact relation connecting optimal value functions for the composition of multiple tasks in entropy-regularized RL. We validate these theoretical contributions with experiments showing that reward shaping and task composition lead to faster learning in various settings.more » « less
An official website of the United States government
